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S U M M A R Y  
The behavior of the compressible boundary layer equations close to a point of zero skin-friction is studied using a 
perturbation technique of Kaplun. The behavior of the skin friction is reduced to a study of a nonlinear integral equation 
with an Abel kernel. For a cold wall this yields the singular behavior described by Buckmaster [2] from a different 
point of view. For a hot wall the behavior is apparently regular when the heat transfer is non zero, in agreement 
with Stewartson [-11]. There is no evidence that the boundary layer breaks down anywhere than at a point of zero 
skin friction and the implications of this for the similarity solutions of Cohen and Reshotko are discussed. 

1. Introduction 

One of the most important problems in boundary-layer theory is that of separation. For many 
years it was believed that integration of the boundary-layer equations must come to an end 
when the skin-friction vanishes and that the point at which this happens coincides with the 
point at which the boundary-layer abruptly leaves the surface and induces O (1) disturbances in 
the exterior inviscid flow. It was not until the work of Goldstein [5] as modified by Stewartson 
[9] appeared, that convincing mathematical evidence for this point of view was established for 
the incompressible boundary-layer. They showed that the boundary layer equations break 
down when the skin-friction vanishes in the sense that the skin-fraction vanishes like (xs-x)  ~ 
and the displacement thickness has infinite slope at the separation point xs. This result has an 
analogy in the behavior of the Falkner-Skan similarity solutions for an exterior velocity x m 

when m is negative. Suppose we have a large duct in which the velocity behaves asymptotically 
like x". If ]ml is sufficiently small (m > -0.0904) the similarity equation has a solution and 
separation does not occur. If now m is slowly decreased we would expect the limiting skin- 
friction to fall until eventually separation occurs; the dependence of the skin-friction on m 
close to this limit is non-analytic. (In fact it was suggested by Hartree [6] that the skin-friction 
vanishes like (m+0.09) ~ but although the result has apparently been widely accepted his 
argument is not precise). 

In 1962 Stewartson examined the behavior of the compressible boundary layer equations. 
He came to the conclusion that at a point of vanishing skin friction either the heat transfer 
vanishes and the skin-friction ~ (xs-x)  ~ or the heat transfer is non-zero and the skin-friction 
is analytic (we will call this the Stewartson alternative). As a consequence it was sgeculated 
(Stewartson, [10]) that for the general compressible boundary-layer, breakdown occurs at 
some point other than where the skin-friction vanishes. Some evidence for this is afforded by 
the Falkner-Skan like solutions calculated by Cohen and Reshotko [3]. For a cold wall 
breakdown occurs for some m before the skin-friction vanishes, whereas for a hot wall breakdown 
does not occur until after the skin-friction has become negative. Recently however, Buck- 
master [-2] has shown that the Stewartson alternative is incorrect for a cold wall and the skin- 
friction vanishes like (xs-x)  ~ In (x~-x). It can not be concluded that breakdown does not 
occur earlier, but the numerical evidence is against it (Merkin, [-8]). 

The behavior for a hot wall has not been established and it is the main purpose of this paper 
to contribute to this problem. The argument given suggests that for a hot-wall the Stewartson 
alternative is correct. This result is not conclusive but appears to eliminate any other behavior 
within the framework of the Goldstein-Stewartson analysis. The line of attack is to avoid the 
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trial and error nature of the Goldstein-Stewartson coordinate expansion and instead, formulate 
the problem as a parameter perturbation. This approach was taken by Kaplun [7] for the 
incompressible problem and he generated all the features found earlier by Stewartson. Kaplun's 
method is here applied to the compressible boundary-layer equations. 

2. The  Perturbat ion  P r o b l e m  

The boundary layer equations to be examined are those investigated by Stewartson [11] and 
are appropriate when the Prandtl number is unity, the viscosity is proportional to the absolute 
temperature and the exterior flow is irrotational and homoenergetic. With y, the distance 
perpendicular to the wall, scaled by the viscocity the equations are 

03 7, O~P 027 ~ O~P OztP v d V ' I + S "  ) 
0y 0 x 0 y  0X ~y2 -- dxx 0y 3 ' 

07 j ~S 07' 0S 0zS 
- (2.1) 

Oy Ox c~x Oy Oy 2 ' 

07' 07' 
U - -  V----- - - - - .  

ay' Ox 

S is essentially the absolute temperature which is prescribed at the wall where both 7 ~ and 
07J/0y vanish. In addition 

0~  
- - - +  V(x ) ,  S ~ O  as y ~ o o  
0y 

and S and 7 ~ are prescribed at some initial station. It is sufficient for the present purpose to 
assign some constant adverse value to the pressure gradient, namely 

dV 
V dx a. (2.2) 

Equations 2.1, 2.2 have the exact solution 

71=1Dy2+~a( l+B)y3+~aCy4 ,  S = B + C y ,  (2.3) 

which also satisfies the wall boundary-conditions provided the wall temperature is constant. 
The various coefficients in (2.3) are all constants and this solution is invariant with x and has 
constant skin-friction D. The essence of Kaplun's method is to choose D to be small, say D = e, 
and then perturb the profile (2.3) in a way that ensures diffusion of vorticity away from the wall 
so that the skin-friction decreases with x, eventually vanishing. At the same time, since in 
Stewartson's ([11]) formulation the temperature field is inevitably a perturbation about the 
wall value, we must chose C to be O (g). Thus the solution to be perturbed is 

~Yo = ~a( l+B)Y 3, So = B .  (2.4) 

At x =0  the initial profiles are chosen to be 

= ~-a (1 + B)y 3 + �89 2 + 2-~aAey 4 + ~2 7/2 (0, y) + 0 (e3), (2.5) 

S = B+Aay+a2S2(O, y)+O(e3), 

and a solution to the boundary-layer equations is sought in the form 

~YJ~ I//o_]_elftl_[_a2 I//2_ ]_ . . . .  

S ~ So~-~,S 1 - ~ a 2 8 2 - ~  . . . .  

At least one of the initial profiles 7'2 (0, y), $2 (0, y) must be non-zero to avoid the solution 
(2.3), but their precise choice presents a difficulty. If a singularity is to be avoided at the origin, 
the initial profiles have to be chosen so that their y-derivatives at the wall satisfy certain compa- 
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tibility conditions (Goldstein [4]). Uniform flow approaching the leading edge of a flat plate 
fails to satisfy the necessary conditions for example, and gives rise to the familiar square-root 
singularity. The difficulty close to separation is that the skin-friction appears in the denominator 
of many of the compatibility conditions so that in the present problem the incorrect choice of 
the O(e z) profile can lead to an O(1) failure of the compatability conditions. This would 
invalidate the choice of (2.4) as the unperturbed flow. An O (e) failure would be acceptable and 
would manifest itself as a singularity in the solution of 7'1, $1, at the origin. It has not been found 
possible to find any general criterion for the choice in (2.5) but this does not seem to be im- 
portant provided it can be assumed that some choice will do the job. 

7"~ and S~ satisfy 

~3 tii 1 

@3 

02 S1 
@2 

with solution 

~ 2 S  2 

~y2 

~3 ~2 
~y 3 

where 
~ -  k~y, k 

- -  - � 8 9  1)y 2 Oa ~ ~ x  1 + a(B+l)y  = aSa, 

~ S  1 
- -  -- �89 I)y2 ~ x  = O, 

(2.6) 

7"1 = �89 S1 = Ay .  (2.7) 

The important feature here is the eigenfunction y2 F (x). It has its counterpart in the Goldstein- 
Stewartson analysis in the complementary functions cq t/2 (t/~ y) that appear at the i th stage in 
their work. The crucial difference is that in their analysis the asymptotic sequence {6~(x)} 
which characterizes the local expansion has to be guessed, subsequent consistency denying or 
confirming the accuracy of the guess. In the present approach the asymptotic sequence is 
contained in F(x) and its extraction is more transparent. 

Turning to the equations for 7"2 and S 2 

_ _  - -  9 2  ~ S  2 _ A 
0x k 92 F' (x), 

(2.9) 
_ _  _ 92  C321/J2 C31/J 2 aS 2 ~ (  92 ) + 2Y 0x - k ~ + ~ + 2y2F aAy4 

x/k 6k ' 

= l a ( B + l )  > 0 ,  

a solution to these equations satisfying the wall conditions can be found for any F. However if 
we insist that neither I / /2 n o r  $2 diverge exponentially for large y, then F is uniquely determined. 
This criterion is precisely the self-consistency check in the Goldstein Stewartson analysis. 

Defining the Laplace Transform 
"oc 

$2 (P, Y) = t e-"x $2 (x, y) dx, 
�9 0 

we find 

$2 = p~AF'I1 ~ K~ 

where ~represents terms that arise only from the initial data and so are regular at separation. 
The transformed equation for 7"2 may be written 

d3~2 y2 d~2 -- 
dy ~ - ~ -  + 2YgJ2 = Q(Y), Y = p�88 

Then if 

2 ) v 2 ) 

~2 has general solution 
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Then 

i~  tV(t)Q(t)dt=O 

and it is this restraint that determines F. In detail, 

J 0 , - 

+k-~ (F~-2Y ~' )  f ~ t~ Kd �89  W = 0 
20 

J. Buckmaster 

r V(Y) 1 r tdt~ d ( ~ ) = u ( Y )  I C l + � 8 9  V( t )Q( t ) td t ]+ I C 2 - ~ f  u(t)Q(t) �9 (2.11) 
dY 

if ~2 is to have a double zero at the wall and not diverge exponentially at infinity, 

(2.12) 

(2.13) 

where H arises only from initial data. It is apparent that the initial profiles only add an in- 
homogeneity to the equation for F, and its precise form is unimportant as far as the nature of 
F close to separation is concerned. Of crucial importance is the sign of 

0 �88 ! - -  ~ �88 , - - 6  J dt 

which has the value 

- , / 2  r(~-) r(-~) 
r(~)r(�88 

and so is negative. Inverting (2.13) therefore yields 

-K1A '(t)(x-t)-~dt+K2(f'+2ff')+f(x) = 0 (2.14) 

where K1 and K 2 are both positive constants. With the special choice of initial profiles 

s2(o, y) = o, ~'2(o, y) o~ y7 

and integrating once we find 

Dx ~ + F + F2+ A f~ F(t)(x-t)--~ d t :  0 (2.15) 

where /~= - A K 1 / K  2 and it may be noted that 

a ,/2 r(�88 1 r(�88 
KI = k ~ ~F(�88 ' K 2 - k  ~ ~/2 " 

D is a constant. 
The essential contribution of the heat transfer is through the integral in (2.15). No matter 

how small/~ might be, if it is non-zero it plays a major role in determining the singularity at 
separation. 

3. The Integral Equation 

In this section (2.15) is studied in order to deduce some important features of its solution. The 
domain of interest starts at x = 0 where F vanishes and ends at the separation point xs where 
F =  -�89 Since close to the origin 

F ~ - Dx ~ 

the discussion will be restricted to the case D > 0 corresponding to decreasing skin-friction. 
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If the heat transfer is zero (A= 0) F has the simple solution 

1 1 3 F = - 7+~ x / 1 - 4  Dx~ (3.1) 

Separation occurs at 

x~ = (4D) -~ 

and the familiar square-root behavior is rediscovered. 
When A # 0  the discussion depends on whether we are dealing with a hot wall (A >0) or a 

cold wall (A< 0). Whichever sign is appropriate, when D is positive separation will always 
occur. To see this for a hot wall assume that separation does not occur so that 

F > - �89  for all x 

It follows that 

_ 1 <  F Z + F <  _Dx~ + A~x ~ 

which is contradicted for large enough x. When the wall is cold the approach to separation is 
such that F " <  0. Certainly F" is negative in the immediate neighborhood of x =0  and we have 

3 D x - I + F " ( I + 2 F ) + 2 F ' 2 + A  F ' ( t ) ( x - t ) - + d t  = 0 (3.2) 
o 

If F" vanishes at some point all the remaining terms in (3.2) are positive when A <  0 and we have 
a contradiction. Integrating F" 

F < - 3Dx ~ 

and separation must occur for some finite x. 
The behavior of F close to the separation point is of fundamental interest so that we define 

1+ >_0 g'=<0 F = - ~  g g _  , 

and then 

~ D x i + 2 g g ' + A  g ' ( t ) ( x - t ) -~d t  = 0 (3.3) 
0 

Unless the behavior is pathological, which seems unlikely, gg' tends as x ~ x s to either a 
constant, zero or infinity. If it approaches a constant this corresponds to a square-root sin- 
gularity for g and the integral in (3.3) behaves like In (x s -x )  as x ~ xs. There is nothing to 
balance this infinite term. If the limit is infinity then there must be a balance between gg' and 
the integral. This is only possible when ~ <  0 (i.e., the wall is cold) and then an expansion can 
be generated with leading terms 

1 ~ 1 , . .  
g ~ z A ( x ~ - x )  ~ In ( x ~ - x ) + � 8 8  In 2)(x~- x) ~ l n { - l n ( x ~ - x ) } + C 3 ( x s - x )  ~ (3.4) 

This cold wall case has been discussed by Buckmaster [2] as a Goldstein-Stewartson expansion 
and the present work adds no additional information. Numerical integration of (3.3) confirms 
(3.4) in the sense that the numerical behavior is undistinguishable from the square-root. 
Nothing more precise can be hoped for since successive terms in the asymptotic sequence 
decrease very slowly. As X ~ 0 the first infinity of terms in the expansion (3.4) all vanish except 
for the third term, and the incompressible limit is retreived. 

Turning now to the hot wall case we must have gg' (x~)= 0. It follows that the skin-friction 
vanishes faster than 0 (x s -x )L  Furthermore, numerical integration of (3.3)* reveals that when 

> 0, F vanishes like (x~- x). It seems that the Stewartson alternative is valid. The expansion 
does not contain a square-root so that the limit X ~ 0 is approached somewhat differently 
than for a cold wall. Numerical evidence is support of the Stewartson alternative for a hot 
wall is sparse. The calculation of Poots (1960) show no evidence of singular behavior but he was 

* A matching process is easily set up with step size decreasing as separation is approached. 
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not concerned with a highly accurate study of the flow close to separation. Claims have been 
made (e.g., Brown and Stewartson, [1] that various unpublished work does reveal singular 
behavior, but in the absence of any published careful examination of this question it would be 
prudent to reserve judgement. If the Stewartson alternative is found to be valid for a hot wall 
then the present work gives some mathematical basis for this. If the alternative is incorrect 
then the present work strongly suggests that resolution of the paradox is unlikely to be found 
within the framework of the Goldstein-Stewartson analysis. None of our conclusions are 
modified in character if suction or blowing is permitted at the wall. 

It might be wondered whether some different perturbation problem could lead to a sin- 
gularity. It is difficult to make unequivocal statements but if we insist on being guided by the 
Goldstein-Stewartson analysis the answer is apparently no. For  failure to generate a sin- 
gularity for a hot wall in the first perturbation ~tl, is, in some sense, equivalent to Stewartson's 
first perturbat ionft ,  containing no singular contribution to the skin friction. Generation of a 
singularity at the second perturbation f2 should be investigated by a study of the perturbation 
problem 

7 ~ ~ ~a(1 + B) y 3 +234eaAy4+e 2 (y2/2 +yXF(x))+e3 ~3 +. . .  

S ~ B + e A y + a 3 S 3 + . . .  

where F (x) is determined by requiring ~3 to have an appropriate solution. However, all higher 
order perturbation problems of this type yield linear equations for F with well-behaved 
coefficients and there is no mechanism to generate singular behavior. 

\ 

4. Implications for the Similarity Solution (m < O) 

In the Introduction it was mentioned that the similarity solutions of Falkner and Skan behave 
as m is varied in a manner that seems to reflect the variation of the non-similar boundary- 
layer with x. Consider the hypothetical duct, an incompressible fluid and m = - 0 . 0 9 .  We 
would expect the similarity solution to be appropriate so that the skin-friction is zero. Now if 
m is decreased a little, the pressure gradient is more adverse and we would expect separation to 
occur with a consequent breakdown in the boundary layer. It would be difficult to attach any 
significance to a similarity solution for this smaller m, so that it is gratifying that the solution 
curve reverses at this point and there are no acceptable solutions for smaller m. Now consider 
the compressible boundary layer on a hot wall with m chosen so that the skin-friction vanishes. 
If m is decreased a little, separation will occur, but assuming the conclusions of this paper are 
valid there is no breakdown of the boundary-layer concept. The separation point is an essential 
singularity (Stewartson, [9] but plausibly the downstream reversed flow can be adjusted to 
eliminate this singular behavior and then the physical picture is of a boundary-layer in which 
the skin-friction vanishes for some finite x and then the flow goes smoothly into a region of 
reversed flow. There should be a similarity solution to describe the limiting flow with negative 
skin-friction, and according to the results of Cohen and Reshotko [3], there is. 

Continuing the argument, for a cold wall for which breakdown must occur when the skin- 
friction vanishes, we might expect the situation to be no different from the incompressible 
case. On the contrary, the solution curves of Cohen and Reshotko reverse beJore the skin- 
friction vanishes. In other words for a given wall temperature there is an m for which a boundary 
layer exists with positive skin-fr ict ion-certainly not an incipient separation situation--but 
a slight decrease in m cause breakdown. Of course our argument is not rigorous but there is 
clearly a difficulty here which needs to be understood. Stewartson [10] suggested that separa- 
tion in the sense of breakdown can no longer be identified with the point of vanishing skin- 
friction when the flow is compressible, but the evidence is that breakdown can not occur earlier 
than this for a cold wall, so that this is not the answer. One possibility that suggests itself and 
is worth speculating about, is connected with the uniqueness of the similarity solutions when 
m < 0. It is well known that uniqueness can only be assured if exponential decay is demanded 
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far from the wall. Only one solution has this behavior, all others behaving algebracially. There 
are no convincing reasons for excluding the algebraic solutions, particularly in the light of the 
work of Brown and Stewartson [1]. Naturally, the solutions we are interested in are those 
approached in the limit x ~ oo for a boundary-layer in an inviscid main-stream that is asymp- 
totically ~ x m. Brown and Stewartson [ 1] claimed that the similarity solutions with exponential 
decay have an advantage in this respect in that for them the double limit limx_~ ~ limy_.o~ 
commutes. This is not true however. The boundary layer at finite x decays for large y like 

y"A(x) exp ~ --(y-k(x))2] (4.1) 
l_ 2F(x) ] 

and although the similarity solution also has behavior like this, n is not in general the same in 
the two cases (k, F and A agree in the limit x ~ oo however). It is possible to construct an inter- 
mediate solution joining the two, but then it may be possible to construct an intermediate 
solution joining (4.1) with the algebraically decaying similarity solution. Thus the question is 
still very much an open one and probably the only way of resolving it is by numerical integra- 
tion of the full boundary-layer equations. The whole point of this is that if in fact some algebraic 
behavior is appropriate for the similarity solutions then the solution curves of Cohen and 
Reshotko have to be adjusted and then perhaps the difficulty discussed earlier will disappear. 
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